Fast efficient computation of expected value of sample information from a probabilistic sensitivity analysis sample: a non-parametric regression approach
نویسندگان
چکیده
Health economic models are used to estimate the expected net benefits of competing decision options. The true values of the parameters of such models are rarely known with certainty, and it is often useful to quantify the value of undertaking further data collection (e.g. a future trial) in order to reduce uncertainty. The value of a proposed future trial can be quantified by its Expected Value of Sample Information (EVSI). The standard approach to computing EVSI is via a nested two-level Monte Carlo sampling scheme that typically requires a large number of economic model runs. This is problematic for complex models, particularly those that require for each model run a large number of patientlevel simulation steps. An additional problem arises if the EVSI inner loop requires MCMC (i.e. in those cases where the parameter distribution is not conjugate to the likelihood of the simulated trial data). In practice, these difficulties have resulted in the restriction of EVSI analyses to only a small number of published examples. To overcome the problems above we present novel, fast and efficient non-parametric regression based method for computing EVSI. The method requires only the “probabilistic sensitivity analysis” (PSA) sample: a single set of samples from the model inputs, along with the corresponding set of model evaluations. The new method allows EVSI to be computed for a model of any complexity, and hence be made more widely available to trial designers and decision makers. We present the method and illustrate its application in a case study. Published: 29 November 2013
منابع مشابه
A Trust Based Probabilistic Method for Efficient Correctness Verification in Database Outsourcing
Correctness verification of query results is a significant challenge in database outsourcing. Most of the proposed approaches impose high overhead, which makes them impractical in real scenarios. Probabilistic approaches are proposed in order to reduce the computation overhead pertaining to the verification process. In this paper, we use the notion of trust as the basis of our probabilistic app...
متن کاملEstimating the Expected Value of Sample Information Using the Probabilistic Sensitivity Analysis Sample: A Fast, Nonparametric Regression-Based Method.
Health economic decision-analytic models are used to estimate the expected net benefits of competing decision options. The true values of the input parameters of such models are rarely known with certainty, and it is often useful to quantify the value to the decision maker of reducing uncertainty through collecting new data. In the context of a particular decision problem, the value of a propos...
متن کاملEstimating Multiparameter Partial Expected Value of Perfect Information from a Probabilistic Sensitivity Analysis Sample
The partial expected value of perfect information (EVPI) quantifies the expected benefit of learning the values of uncertain parameters in a decision model. Partial EVPI is commonly estimated via a 2-level Monte Carlo procedure in which parameters of interest are sampled in an outer loop, and then conditional on these, the remaining parameters are sampled in an inner loop. This is computational...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملRecent Trends in Nonlinear Methods of HRV Analysis: A Review
The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value <30%. This may be due to considering the RR-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013